Next-Generation Therapeutics: The Role of 3D Bioprinting in Personalized Tissue Engineering
Author(s)
Download Full PDF Pages: 43-66 | Views: 17 | Downloads: 5 | DOI: 10.5281/zenodo.17661700
Volume 14 - November 2025 (11)
Abstract
Over the past decade there has been enormous progress address patient -specific disease complications to develop personal means strategies. Especially the emergence of 3D bioprinting for tissue and in vitro models of the limb engineering offers new opportunities to improve personal medicine. However, power bioprinter structures are yet to be able to fulfill the final target: with a physically realistic organ mature biological functions. Current biopriming approaches have technical challenges Accurate cell deposits, effective discrimination, proper convection and innovation. This review Introduce the principles and realities of bioprinting with strong attention to the major technology including extruding pressure and digital light treatment (DLP). We discussed further Bioprinter constructions. Transplantation for regenerative therapy and in vitro with high thruput drug growth models Drugs. Although no size-passage approach for bio prinks and the promising results of initial studies have shown that bioprinting can serve as a Empowering technology to solve important challenges in personal medicine
Keywords
biopics; Biome material; Drug discovery; Individuals; Accurate drug; regenerative medicine; Original cell
References
1) K. Gorshkov et al., "Advancing Precision Medicine with Personalized Drug Screening," Drug Discov. Today, vol. 24, pp. 272–278, 2019. [Online]. Available: https://doi.org/10.1016/j.drudis.2018.10.016
2) W. J. Chng et al., "Enabling Technologies for Personalized and Precision Medicine," Trends Biotechnol., vol. 38, pp. 497–518, 2020. [Online]. Available: https://doi.org/10.1016/j.tibtech.2019.12.021
3) Y. Li et al., "The Impact of Donor and Recipient Genetic Variation on Outcomes After Solid Organ Transplantation: A Scoping Review and Future Perspectives," Transplantation, vol. 106, pp. 1548–1557, 2022. [Online]. Available: https://doi.org/10.1097/TP.0000000000004070
4) S. Mathur and J. Sutton, "Personalized Medicine Could Transform Healthcare," Biomed. Rep., vol. 7, pp. 3–5, 2017. [Online]. Available: https://doi.org/10.3892/br.2017.912
5) K. Takahashi et al., "Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors," Cell, vol. 131, pp. 861–872, 2007. [Online]. Available: https://doi.org/10.1016/j.cell.2007.11.019
6) J. A. Robertson, "Human Embryonic Stem Cell Research: Ethical and Legal Issues," Nat. Rev. Genet., vol. 2, pp. 74–78, 2001. [Online]. Available: https://doi.org/10.1038/35047551
7) C. V. Reddy et al., "First FDA Approved 3D Printed Drug Paved New Path for Increased Precision in Patient Care," Appl. Clin. Res. Clin. Trials Regul. Aff., vol. 7, pp. 93–103, 2020. [Online]. Available: https://doi.org/10.1016/j.acrc.2020.04.002
8) C. L. Overby and P. Tarczy-Hornoch, "Personalized Medicine: Challenges and Opportunities for Translational Bioinformatics," Pers. Med., vol. 10, pp. 453–462, 2013. [Online]. Available: https://doi.org/10.2217/pme.13.41
9) J. Yang et al., "Application of Ovarian Cancer Organoids in Precision Medicine: Key Challenges and Current Opportunities," Front. Cell Dev. Biol., vol. 9, 701429, 2021. [Online]. Available: https://doi.org/10.3389/fcell.2021.701429
10) Y.-C. Tang, R. T. Powell, and A. Gottlieb, "Molecular Pathways Enhance Drug Response Prediction Using Transfer Learning from Cell Lines to Tumors and Patient-Derived Xenografts," Sci. Rep., vol. 12, 16109, 2022. [Online]. Available: https://doi.org/10.1038/s41598-022-20341-w
11) S. V. Murphy and A. Atala, "3D Bioprinting of Tissues and Organs," Nat. Biotechnol., vol. 32, pp. 773–785, 2014. [Online]. Available: https://doi.org/10.1038/nbt.2958
12) A. Mazzocchi, S. Soker, and A. Skardal, "3D Bioprinting for High-Throughput Screening: Drug Screening, Disease Modeling, and Precision Medicine Applications," Appl. Phys. Rev., vol. 6, 011302, 2019. [Online]. Available: https://doi.org/10.1063/1.5053554
13) Z. Huang, G. Shao, and L. Li, "Micro/Nano Functional Devices Fabricated by Additive Manufacturing," Prog. Mater. Sci., vol. 131, 101020, 2023. [Online]. Available: https://doi.org/10.1016/j.pmatsci.2022.101020
14) Y. Yu, Y. Zhang, J. A. Martin, and I. T. Ozbolat, "Evaluation of Cell Viability and Functionality in Vessel-like Bioprintable Cell-Laden Tubular Channels," J. Biomech. Eng., vol. 135, 091011, 2013. [Online]. Available: https://doi.org/10.1115/1.4024577
15) W. L. Ng et al., "Controlling Droplet Impact Velocity and Droplet Volume: Key Factors to Achieving High Cell Viability in Sub-Nanoliter Droplet-Based Bioprinting," Int. J. Bioprint., vol. 8, 424, 2021. [Online]. Available: https://doi.org/10.18063/ijb.v8i2.424
16) X. Cui, G. Gao, and Y. Qiu, "Accelerated Myotube Formation Using Bioprinting Technology for Biosensor Applications," Biotechnol. Lett., vol. 35, pp. 315–321, 2013. [Online]. Available: https://doi.org/10.1007/s10529-012-1084-8
17) U. Jammalamadaka and K. Tappa, "Recent Advances in Biomaterials for 3D Printing and Tissue Engineering," J. Funct. Biomater., vol. 9, 22, 2018. [Online]. Available: https://doi.org/10.3390/jfb9010022
18) J. Li, M. Chen, X. Fan, and H. Zhou, "Recent Advances in Bioprinting Techniques: Approaches, Applications and Future Prospects," J. Transl. Med., vol. 14, 271, 2016. [Online]. Available: https://doi.org/10.1186/s12967-016-1028-0
19) X. Cui, D. Dean, Z. M. Ruggeri, and T. Boland, "Cell Damage Evaluation of Thermal Inkjet Printed Chinese Hamster Ovary Cells," Biotechnol. Bioeng., vol. 106, pp. 963–969, 2010. [Online]. Available: https://doi.org/10.1002/bit.22752
20) Z. Xia, S. Jin, and K. Ye, "Tissue and Organ 3D Bioprinting," SLAS Technol., vol. 23, pp. 301–314, 2018. [Online]. Available: https://doi.org/10.1177/2472630318756885
21) I. T. Ozbolat and M. Hospodiuk, “Current Advances and Future Perspectives in Extrusion-Based Bioprinting,” Biomaterials, vol. 76, pp. 321–343, 2016. [Online]. Available: https://doi.org/10.1016/j.biomaterials.2015.10.076
22) V. T. Duong, T. T. Dang, C. H. Hwang, S. H. Back, and K. Koo, “Coaxial Printing of Double-Layered and Free-Standing Blood Vessel Analogues without Ultraviolet Illumination for High-Volume Vascularised Tissue,” Biofabrication, vol. 12, no. 4, p. 045033, 2020. [Online]. Available: https://doi.org/10.1088/1758-5090/ab9b38
23) C. T. Nguyen, V. T. Duong, C. H. Hwang, and K. Koo, “Angiogenesis in Free-Standing Two-Vasculature-Embedded Scaffold Extruded by Two-Core Laminar Flow Device,” Int. J. Bioprint., vol. 8, p. 557, 2022. [Online]. Available: https://doi.org/10.18063/ijb.v8i1.557
24) C. Mandrycky, Z. Wang, K. Kim, and D.-H. Kim, “3D Bioprinting for Engineering Complex Tissues,” Biotechnol. Adv., vol. 34, pp. 422–434, 2016. [Online]. Available: https://doi.org/10.1016/j.biotechadv.2015.12.011
25) A. N. Leberfinger, D. J. Ravnic, A. Dhawan, and I. T. Ozbolat, “Concise Review: Bioprinting of Stem Cells for Transplantable Tissue Fabrication,” Stem Cells Transl. Med., vol. 6, pp. 1940–1948, 2017. [Online]. Available: https://doi.org/10.1002/sctm.17-0125
26) Ž. P. Kačarević, P. M. Rider, S. Alkildani, S. Retnasingh, R. Smeets, O. Jung, Z. Ivanišević, and M. Barbeck, “An Introduction to 3D Bioprinting: Possibilities, Challenges and Future Aspects,” Materials, vol. 11, no. 12, p. 2199, 2018. [Online]. Available: https://doi.org/10.3390/ma11112199
27) L. Koch, O. Brandt, A. Deiwick, and B. Chichkov, “Laser-Assisted Bioprinting at Different Wavelengths and Pulse Durations with a Metal Dynamic Release Layer: A Parametric Study,” Int. J. Bioprint., vol. 3, p. 96, 2017. [Online]. Available: https://doi.org/10.18063/IJB.2017.03.013
28) Z. Wang, X. Jin, R. Dai, J. F. Holzman, and K. Kim, “An Ultrafast Hydrogel Photocrosslinking Method for Direct Laser Bioprinting,” RSC Adv., vol. 6, pp. 21099–21104, 2016. [Online]. Available: https://doi.org/10.1039/C5RA26292B
29) R. Gauvin, Y.-C. Chen, J. W. Lee, P. Soman, P. Zorlutuna, J. W. Nichol, H. Bae, S. Chen, and A. Khademhosseini, “Microfabrication of Complex Porous Tissue Engineering Scaffolds Using 3D Projection Stereolithography,” Biomaterials, vol. 33, pp. 3824–3834, 2012. [Online]. Available: https://doi.org/10.1016/j.biomaterials.2012.01.048
30) X. Wang, C. Yao, W. Weng, K. Cheng, and Q. Wang, “Visible-Light-Responsive Surfaces for Efficient, Noninvasive Cell Sheet Harvesting,” ACS Appl. Mater. Interfaces, vol. 9, pp. 28250–28259, 2017. [Online]. Available: https://doi.org/10.1021/acsami.7b07457
31) A. Hoffmann et al., “New Stereolithographic Resin Providing Functional Surfaces for Biocompatible Three-Dimensional Printing,” J. Tissue Eng., vol. 8, 2017. [Online]. Available: https://doi.org/10.1177/2041731417744485
32) A. K. Miri et al., “Effective Bioprinting Resolution in Tissue Model Fabrication,” Lab Chip, vol. 19, pp. 2019–2037, 2019. [Online]. Available: https://doi.org/10.1039/C9LC00265A
33) I. T. Ozbolat and Y. Yu, “Bioprinting Toward Organ Fabrication: Challenges and Future Trends,” IEEE Trans. Biomed. Eng., vol. 60, pp. 691–699, 2013. [Online]. Available: https://doi.org/10.1109/TBME.2013.2243912
34) Z. Wang et al., “A Simple and High-Resolution Stereolithography-Based 3D Bioprinting System Using Visible Light Crosslinkable Bioinks,” Biofabrication, vol. 7, no. 4, p. 045009, 2015. [Online]. Available: https://doi.org/10.1088/1758-5090/7/4/045009
35) J. Gopinathan and I. Noh, “Recent Trends in Bioinks for 3D Printing,” Biomater. Res., vol. 22, no. 1, p. 11, 2018. [Online]. Available: https://doi.org/10.1186/s40824-018-0122-1
36) T. Ahlfeld et al., “Development of a Clay Based Bioink for 3D Cell Printing for Skeletal Application,” Biofabrication, vol. 9, no. 3, p. 034103, 2017. [Online]. Available: https://doi.org/10.1088/1758-5090/aa7e96
37) Q. Gao, B.-S. Kim, and G. Gao, “Advanced Strategies for 3D Bioprinting of Tissue and Organ Analogs Using Alginate Hydrogel Bioinks,” Mar. Drugs, vol. 19, p. 708, 2021. [Online]. Available: https://doi.org/10.3390/md19120708
38) J. Xiong et al., “Topology Evolution and Gelation Mechanism of Agarose Gel,” J. Phys. Chem. B, [Online]. Available: https://pubs.acs.org/doi/pdf/10.1021/jp044473u (accessed Feb. 23, 2023).
39) J. Stepanovska et al., “Collagen Bioinks for Bioprinting: A Systematic Review of Hydrogel Properties, Bioprinting Parameters, Protocols, and Bioprinted Structure Characteristics,” Biomedicines, vol. 9, p. 1137, 2021. [Online]. Available: https://doi.org/10.3390/biomedicines9091137
40) Y.-L. Yang, L. M. Leone, and L. J. Kaufman, “Elastic Moduli of Collagen Gels Can Be Predicted from Two-Dimensional Confocal Microscopy,” Biophys. J., vol. 97, pp. 2051–2060, 2009. [Online]. Available: https://doi.org/10.1016/j.bpj.2009.07.035
41) G. Chinga-Carrasco, J. Rosendahl, and J. Catalán, “Nanocelluloses—Nanotoxicology, Safety Aspects and 3D Bioprinting,” in Nanotoxicology in Safety Assessment of Nanomaterials, H. Louro and M.J. Silva, Eds., Cham, Switzerland: Springer, 2022, pp. 155–177. doi: https://doi.org/10.1007/978-3-030-88072-9_10
42) A. Bandyopadhyay, B.B. Mandal, and N. Bhardwaj, “3D Bioprinting of Photo-Crosslinkable Silk Methacrylate (SilMA)-Polyethylene Glycol Diacrylate (PEGDA) Bioink for Cartilage Tissue Engineering,” J. Biomed. Mater. Res. A, vol. 110, pp. 884–898, 2022. doi: https://doi.org/10.1002/jbm.a.37379
43) C.C. Chang, E.D. Boland, S.K. Williams, and J.B. Hoying, “Direct-Write Bioprinting Three-Dimensional Biohybrid Systems for Future Regenerative Therapies,” J. Biomed. Mater. Res. B Appl. Biomater., vol. 98B, pp. 160–170, 2011. doi: https://doi.org/10.1002/jbm.b.31814
44) D.B. Kolesky et al., “3D Bioprinting of Vascularized, Heterogeneous Cell-Laden Tissue Constructs,” Adv. Mater., vol. 26, pp. 3124–3130, 2014. doi: https://doi.org/10.1002/adma.201305506
45) C.S. Ong et al., “3D Bioprinting Using Stem Cells,” Pediatr. Res., vol. 83, pp. 223–231, 2018. doi: https://doi.org/10.1038/pr.2017.252
46) G. Skeldon, B. Lucendo-Villarin, and W. Shu, “Three-Dimensional Bioprinting of Stem-Cell Derived Tissues for Human Regenerative Medicine,” Philos. Trans. R. Soc. B Biol. Sci., vol. 373, 20170224, 2018. doi: https://doi.org/10.1098/rstb.2017.0224
47) S. Yamanaka, “Strategies and New Developments in the Generation of Patient-Specific Pluripotent Stem Cells,” Cell Stem Cell, vol. 1, pp. 39–49, 2007. doi: https://doi.org/10.1016/j.stem.2007.05.009
48) L. Koch et al., “Laser Bioprinting of Human Induced Pluripotent Stem Cells—the Effect of Printing and Biomaterials on Cell Survival, Pluripotency, and Differentiation,” Biofabrication, vol. 10, no. 3, 035005, 2018. doi: https://doi.org/10.1088/1758-5090/aacb01
49) F. Salaris et al., “3D Bioprinted Human Cortical Neural Constructs Derived from Induced Pluripotent Stem Cells,” J. Clin. Med., vol. 8, no. 10, p. 1595, 2019. https://doi.org/10.3390/jcm8101595
50) S. Chikae et al., “Three-Dimensional Bioprinting Human Cardiac Tissue Chips Using a Painting Needle Method,” Biotechnol. Bioeng., vol. 116, pp. 3136–3142, 2019. doi: https://doi.org/10.1002/bit.27140
51) R. Dai et al., “Adipose-Derived Stem Cells for Tissue Engineering and Regenerative Medicine Applications,” Stem Cells Int., vol. 2016, 6737345, 2016. doi: https://doi.org/10.1155/2016/6737345
52) Z. Wang, Z. Tian, F. Menard, and K. Kim, “Comparative Study of Gelatin Methacrylate Hydrogels from Different Sources for Biofabrication Applications,” Biofabrication, vol. 9, no. 4, 044101, 2017. https://doi.org/10.1088/1758-5090/aa83cf
53) K. Sakthivel et al., “High Throughput Screening of Cell Mechanical Response Using a Stretchable 3D Cellular Microarray Platform,” Small, vol. 16, no. 35, 2000941, 2020. https://doi.org/10.1002/smll.202000941
54) D. Joung et al., “3D Printed Stem-Cell Derived Neural Progenitors Generate Spinal Cord Scaffolds,” Adv. Funct. Mater., vol. 28, 1801850, 2018. https://doi.org/10.1002/adfm.201801850
55) J.M. Crook and E. Tomaskovic-Crook, “Bioprinting 3D Human Induced Pluripotent Stem Cell Constructs for Multilineage Tissue Engineering and Modeling,” in 3D Bioprinting: Methods in Molecular Biology, vol. 2140, Humana, 2020, pp. 251–258. doi: https://doi.org/10.1007/978-1-0716-0480-0_17
56) C. Cofiño, S. Perez-Amodio, C.E. Semino, E. Engel, and M.A. Mateos-Timoneda, “Development of a Self-Assembled Peptide/Methylcellulose-Based Bioink for 3D Bioprinting,” Macromol. Mater. Eng., vol. 304, no. 9, 1900353, 2019. doi: https://doi.org/10.1002/mame.201900353
57) M. Yeo, J.-S. Lee, W. Chun, and G.H. Kim, “An Innovative Collagen-Based Cell-Printing Method for Obtaining Human Adipose Stem Cell-Laden Structures Consisting of Core-Sheath Structures for Tissue Engineering,” Biomacromolecules, vol. 17, no. 4, pp. 1365–1375, 2016. doi: https://doi.org/10.1021/acs.biomac.5b01671
58) F. Pati et al., “Printing Three-Dimensional Tissue Analogues with Decellularized Extracellular Matrix Bioink,” Nat. Commun., vol. 5, p. 3935, 2014. doi: https://doi.org/10.1038/ncomms4935
59) Y.J. Shin et al., “3D Bioprinting of Mechanically Tuned Bioinks Derived from Cardiac Decellularized Extracellular Matrix,” Acta Biomater., vol. 119, pp. 75–88, 2021. doi: https://doi.org/10.1016/j.actbio.2020.07.038
60) J. Jang et al., “3D Printed Complex Tissue Construct Using Stem Cell-Laden Decellularized Extracellular Matrix Bioinks for Cardiac Repair,” Biomaterials, vol. 112, pp. 264–274, 2017. doi: https://doi.org/10.1016/j.biomaterials.2016.10.026
61) X. Guo, Y. Ma, Y. Min, J. Sun, X. Shi, G. Gao, L. Sun, and J. Wang, “Progress and prospect of technical and regulatory challenges on tissue-engineered cartilage as therapeutic combination product,” Bioact. Mater., vol. 20, pp. 501–518, 2023. [Online]. Available: https://doi.org/10.1016/j.bioactmat.2022.07.010
62) F. Diomede et al., “Three-dimensional printed PLA scaffold and human gingival stem cell-derived extracellular vesicles: A new tool for bone defect repair,” Stem Cell Res. Ther., vol. 9, no. 1, p. 104, 2018. [Online]. Available: https://doi.org/10.1186/s13287-018-0840-0
63) B. N. Teixeira, P. Aprile, R. H. Mendonça, D. J. Kelly, and R. M. d. S. M. Thiré, “Evaluation of bone marrow stem cell response to PLA scaffolds manufactured by 3D printing and coated with polydopamine and type I collagen,” J. Biomed. Mater. Res. B Appl. Biomater., vol. 107, no. 1, pp. 37–49, 2019. [Online]. Available: https://doi.org/10.1002/jbm.b.34197
64) N. Montserrat, E. Garreta, and J. C. Izpisua Belmonte, “Regenerative strategies for kidney engineering,” FEBS J., vol. 283, no. 18, pp. 3303–3324, 2016. [Online]. Available: https://doi.org/10.1111/febs.13760
65) H. Rashidi et al., “3D human liver tissue from pluripotent stem cells displays stable phenotype in vitro and supports compromised liver function in vivo,” Arch. Toxicol., vol. 92, pp. 3117–3129, 2018. [Online]. Available: https://doi.org/10.1007/s00204-018-2297-3
66) E. Goulart et al., “3D bioprinting of liver spheroids derived from human induced pluripotent stem cells sustain liver function and viability in vitro,” Biofabrication, vol. 12, no. 1, p. 015010, 2019. [Online]. Available: https://doi.org/10.1088/1758-5090/ab591c
67) D. Zhang and K. A. Kilian, “The effect of mesenchymal stem cell shape on the maintenance of multipotency,” Biomaterials, vol. 34, no. 16, pp. 3962–3969, 2013. [Online]. Available: https://doi.org/10.1016/j.biomaterials.2013.02.029
68) K. T. Lawlor et al., “Cellular extrusion bioprinting improves kidney organoid reproducibility and conformation,” Nat. Mater., vol. 20, pp. 260–271, 2021. [Online]. Available: https://doi.org/10.1038/s41563-020-00806-w
69) C. S. Ong et al., “Biomaterial-free three-dimensional bioprinting of cardiac tissue using human induced pluripotent stem cell derived cardiomyocytes,” Sci. Rep., vol. 7, p. 4566, 2017. [Online]. Available: https://doi.org/10.1038/s41598-017-04534-8
70) [10] E. Yeung et al., “Cardiac regeneration using human-induced pluripotent stem cell-derived biomaterial-free 3D-bioprinted cardiac patch in vivo,” J. Tissue Eng. Regen. Med., vol. 13, no. 12, pp. 2031–2039, 2019. [Online]. Available: https://doi.org/10.1002/term.2957
71) [11] Q. Gu et al., “Functional 3D neural mini-tissues from printed gel-based bioink and human neural stem cells,” Adv. Healthc. Mater., vol. 5, no. 11, pp. 1429–1438, 2016. [Online]. Available: https://doi.org/10.1002/adhm.201500885
72) E. Abelseth et al., “3D printing of neural tissues derived from human induced pluripotent stem cells using a fibrin-based bioink,” ACS Biomater. Sci. Eng., vol. 5, no. 1, pp. 234–243, 2019. [Online]. Available: https://doi.org/10.1021/acsbiomaterials.8b01100
73) L. De la Vega et al., “3D bioprinting human induced pluripotent stem cell-derived neural tissues using a novel lab-on-a-printer technology,” Appl. Sci., vol. 8, no. 12, p. 2414, 2018. [Online]. Available: https://doi.org/10.3390/app8122414
74) J. Kim et al., “3D cell printing of islet-laden pancreatic tissue-derived extracellular matrix bioink constructs for enhancing pancreatic functions,” J. Mater. Chem. B, vol. 7, no. 11, pp. 1773–1781, 2019. [Online]. Available: https://doi.org/10.1039/C8TB02913A
75) A. Sorkio et al., “Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks,” Biomaterials, vol. 171, pp. 57–71, 2018. [Online]. Available: https://doi.org/10.1016/j.biomaterials.2018.04.034
76) M. Takasato, P. X. Er, H. S. Chiu, and M. H. Little, “Generating kidney organoids from human pluripotent stem cells,” Nat. Protoc., vol. 11, no. 9, pp. 1681–1692, 2016. [Online]. Available: https://doi.org/10.1038/nprot.2016.098
77) M. Hughson, A. B. Farris, R. Douglas-Denton, W. E. Hoy, and J. F. Bertram, “Glomerular number and size in autopsy kidneys: The relationship to birth weight,” Kidney Int., vol. 63, pp. 2113–2122, 2003. [Online]. Available: https://doi.org/10.1046/j.1523-1755.2003.00017.x
78) L. J. Hale et al., “3D organoid-derived human glomeruli for personalised podocyte disease modelling and drug screening,” Nat. Commun., vol. 9, p. 5167, 2018. [Online]. Available: https://doi.org/10.1038/s41467-018-07594-2
79) J. M. Vanslambrouck et al., “A toolbox to characterize human induced pluripotent stem cell-derived kidney cell types and organoids,” J. Am. Soc. Nephrol., vol. 30, no. 10, pp. 1811–1823, 2019. [Online]. Available: https://doi.org/10.1681/ASN.2019020131
80) F.-Y. Hsieh, H.-H. Lin, and S.-H. Hsu, “3D bioprinting of neural stem cell-laden thermoresponsive biodegradable polyurethane hydrogel and potential in central nervous system repair,” Biomaterials, vol. 71, pp. 48–57, 2015. [Online]. Available: https://doi.org/10.1016/j.biomaterials.2015.08.020
81) Nature, “Drug screening—Latest research and news.” [Online]. Available: https://www.nature.com/subjects/drug-screening
82) [22] X. Ma et al., “3D bioprinting of functional tissue models for personalized drug screening and in vitro disease modeling,” Adv. Drug Deliv. Rev., vol. 132, pp. 235–251, 2018. [Online]. Available: https://doi.org/10.1016/j.addr.2018.07.001
83) A. Mullard, “New drugs cost US$2.6 billion to develop,” Nat. Rev. Drug Discov., vol. 13, p. 877, 2014. [Online]. Available: https://doi.org/10.1038/nrd4466
84) J. Ribas et al., “Cardiovascular organ-on-a-chip platforms for
85) drug discovery and development,” Appl. Vitro Toxicol., vol. 2, no. 2, pp. 82–96, 2016. [Online]. Available: https://doi.org/10.1089/aivt.2016.0002
86) J. U. Lind et al., “Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing,” Nat. Mater., vol. 16, pp. 303–308, 2017. [Online]. Available: https://doi.org/10.1038/nmat4782
87) X. Ma et al., “Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting,” Proc. Natl. Acad. Sci. U.S.A., vol. 113, no. 8, pp. 2206–2211, 2016. [Online]. Available: https://doi.org/10.1073/pnas.1524510113
88) V. Liu Tsang et al., “Fabrication of 3D hepatic tissues by additive photopatterning of cellular hydrogels,” FASEB J., vol. 21, pp. 790–801, 2007. [Online]. Available: https://doi.org/10.1096/fj.06-6654com
89) S. R. Khetani and S. N. Bhatia, “Microscale culture of human liver cells for drug development,” Nat. Biotechnol., vol. 26, no. 1, pp. 120–126, 2008. [Online]. Available: https://doi.org/10.1038/nbt1361
90) N. J. Hewitt et al., “Primary hepatocytes: Current understanding of the regulation of metabolic enzymes and transporter proteins, and pharmaceutical practice for the use of hepatocytes,” Drug Metab. Rev., vol. 39, no. 1, pp. 159–234, 2007. [Online]. Available: https://doi.org/10.1080/03602530601093489
91) M. F. J. Fransen et al., “Bioprinting of kidney in vitro models: Cells, biomaterials, and manufacturing techniques,” Essays Biochem., vol. 65, no. 4, pp. 587–602, 2021. [Online]. Available: https://doi.org/10.1042/EBC20200178
92) J. K. C. Chuah and D. Zink, “Stem cell-derived kidney cells and organoids: Recent breakthroughs and emerging applications,” Biotechnol. Adv., vol. 35, no. 2, pp. 150–167, 2017. [Online]. Available: https://doi.org/10.1016/j.biotechadv.2016.12.002
93) [32] M. Tang et al., “Three-dimensional bioprinted glioblastoma microenvironments model cellular dependencies and immune interactions,” Cell Res., vol. 30, no. 10, pp. 833–853, 2020. [Online]. Available: https://doi.org/10.1038/s41422-020-0340-4
94) S. You et al., “High cell density and high-resolution 3D bioprinting for fabricating vascularized tissues,” Sci. Adv., vol. 9, no. 24, p. eade7923, 2023. [Online]. Available: https://doi.org/10.1126/sciadv.ade7923
Cite this Article: