Engineering Human Kidneys in the Lab: A Breakthrough in Regenerative Medicine
Author(s)
Download Full PDF Pages: 01-20 | Views: 32 | Downloads: 11 | DOI: 10.5281/zenodo.17462564
Abstract
Chronic kidney disease (CKD) is the condition that has affected a number of people globally with limited treatment options concentrating on dialysis and organ transplantation. Stem cell biology, tissue engineering, and organoid technology have been the sources of human kidney tissue that is functional and can be used in vitro. The paper explores the advances in lab-grown human kidneys and the parts of it that are made from iPSC-derived kidney organoids, bioprinting technologies, and the problems of vascularization and maturation. The paper goes on to discuss how these changes are playing a big part in the future of regenerative nephrology and also solving the problem of organ shortage around the world. Besides, we are also addressing the ethical, technical, and translational problems that need to be solved so that lab-grown kidneys can be easily come from the bench and used at the bedside. The generation of kidney organoids and models produced by bio printing is a big step in the history of regenerative medicine. The paper addresses several topics open in the field of kidney organoid culture, neural crest and placode interactions, and 3D bioprinting technologies. In this paper we are reviewing the molecular and developmental biology of the process of organoid formation and the bioprinting innovations integrating them and providing a comprehensive Helicopter overview of kidney regeneration strategies. This merging gives the reader an insight into the whole-organ engineering, patient-specific therapies, and drug screening opportunities and challenges in the future
Keywords
Kidney organoids, regenerative medicine, stem cells, iPSC, tissue engineering, 3D bioprinting, nephrology.
References
1) Geuens, T. et al. (2020). Overcoming kidney organoid challenges for regenerative medicine. npj Regen Med. https://www.nature.com/articles/s41536-020-0093-4
2) Taka Sato, M. et al. (2015). Kidney organoids from human iPS cells. Nature. https://www.nature.com/articles/nature15695
3) Freedman, B. et al. (2015). Modelling kidney disease with CRISPR-mutant kidney organoids. Nature Communications. https://www.nature.com/articles/ncomms9719
4) Steventon, B., Mayor, R. & Streit, A. Neural crest and placode interaction during the development of the cranial sensory system. Dev. Biol. 389, 28–38 (2014). https://doi.org/10.1016/j.ydbio.2014.01.021
5) Baker, C. V. & Bronner-Fraser, M. Vertebrate cranial placodes I. Embryonic induction. Dev. Biol. 232, 1–61 (2001). https://doi.org/10.1006/dbio.2001.0156
6) Graham, A. & Begbie, J. Neurogenic placodes: a common front. Trends Neurosis. 23, 313–316 (2000). https://www.cell.com/trends/neurosciences/issue?pii=S0166-2236(00)X0061-6
7) Schlosser, G. Induction and specification of cranial placodes. Dev. Biol. 294, 303–351 (2006). https://doi.org/10.1016/j.ydbio.2006.03.009
8) Lamborghini, J. E. Rohon-beard cells and other large neurons in Xenopus embryos originate during gastrulation. J. Comp. Neurol. 189, 323–333 (1980). https://onlinelibrary.wiley.com/toc/10969861/1980/189/2
9) Meulemans, D. & Bronner-Fraser, M. Gene-regulatory interactions in neural crest evolution and development. Dev. Cell 7, 291–299 (2004). https://www.cell.com/developmental-cell/issue?pii=S1534-5807(00)X0041-X
10) Holland, N. D. & Yu, J. K. Epidermal receptor development and sensory pathways in vitally stained amphioxus (Branchiostoma floridae). Acta Zool. 83, 309–319 (2002). https://onlinelibrary.wiley.com/toc/14636395/2002/83/4
11) Lacalli, T. C. & Hou, S. F. A reexamination of the epithelial sensory cells of amphioxus (Branchiostoma). Acta Zool. 80, 125–134 (1999). https://onlinelibrary.wiley.com/toc/14636395/1999/80/2
12) Nicol, D. & Meinertzhagen, I. A. Development of the central nervous system of the larva of the ascidian, Ciona intestinalis L. II. Neural plate morphogenesis and cell lineages during neurulation. Dev. Biol. 130, 737–766 (1988). https://doi.org/10.1016/0012-1606(88)90364-8
13) Nishida, H. Cell lineage analysis in ascidian embryos by intracellular injection of a tracer enzyme. III. Up to the tissue restricted stage. Dev. Biol. 121, 526–541 (1987). https://doi.org/10.1016/0012-1606(87)90188-6
14) Abitua, P. B., Wagner, E., Navarrete, I. A. & Levine, M. Identification of a rudimentary neural crest in a non-vertebrate chordate. Nature 492, 104–107 (2012). https://www.nature.com/articles/nature11589#citeas
15) Wagner, E. & Levine, M. FGF signaling establishes the anterior border of the Ciona neural tube. Development 139, 2351–2359 (2012). https://doi.org/10.1242/dev.078485
16) Manni, L., Caicci, F., Gasparini, F., Zaniolo, G. & Burighel, P. Hair cells in ascidians and the evolution of lateral line placodes. Evol. Dev. 6, 379–381 (2004).Article PubMed Google Scholar
17) Mazet, F. et al. Molecular evidence from Ciona intestinalis for the evolutionary origin of vertebrate sensory placodes. Dev. Biol. 282, 494–508 (2005).Article CAS PubMed Google Scholar
18) Ikeda, T., Matsuoka, T. & Satou, Y. A time delay gene circuit is required for palp formation in the ascidian embryo. Development 140, 4703–4708 (2013).Article CAS PubMed Google Scholar
19) Pasini, A. et al. Formation of the ascidian epidermal sensory neurons: insights into the origin of the chordate peripheral nervous system. PLoS Biol. 4, e225 (2006)Article PubMed PubMed Central Google Scholar
20) Hudson, C. & Lemaire, P. Induction of anterior neural fates in the ascidian Ciona intestinalis. Mech. Dev. 100, 189–203 (2001).Article CAS PubMed Google Scholar
21) Tassy, O., Daian, F., Hudson, C., Bertrand, V. & Lemaire, P. A quantitative approach to the study of cell shapes and interactions during early chordate embryogenesis. Curr. Biol. 16, 345–358 (2006).Article CAS PubMed Google Scholar
22) Bertrand, V., Hudson, C., Caillol, D., Popovici, C. & Lemaire, P. Neural tissue in ascidian embryos is induced by FGF9/16/20, acting via a combination of maternal GATA and Ets transcription factors. Cell 115, 615–627 (2003).Article CAS PubMed Google Scholar
23) Khoueiry, P. et al. A cis-regulatory signature in ascidians and flies, independent of transcription factor binding sites. Curr. Biol. 20, 792–802 (2010).Article CAS PubMed Google Scholar
24) Hudson, C., Darras, S., Caillol, D., Yasuo, H. & Lemaire, P. A conserved role for the MEK signalling pathway in neural tissue specification and posteriorisation in the invertebrate chordate, the ascidian Ciona intestinalis. Development 130, 147–159 (2003).Article CAS PubMed Google Scholar
25) Ohta, N. & Satou, Y. Multiple Signaling Pathways Coordinate to Induce a Threshold Response in a Chordate Embryo. PLoS Genet. 9, e1003818 (2013).Article PubMed PubMed Central Google Scholar
26) Stolfi, A. et al. Guidelines for the nomenclature of genetic elements in tunicate genomes. Genesis. 53, 1–14 (2015).Article PubMed Google Scholar
27) Roure, A., Lemaire, P. & Darras, S. An otx/nodal regulatory signature for posterior neural development in ascidians. PLoS Genet. 10, e1004548 (2014).Article PubMed PubMed Central Google Scholar
28) Imai, K. S., Levine, M., Satoh, N. & Satou, Y. Regulatory blueprint for a chordate embryo. Science 312, 1183–1187 (2006).Article ADS CAS PubMed Google Scholar
29) Imai, K. S., Hino, K., Yagi, K., Satoh, N. & Satou, Y. Gene expression profiles of transcription factors and signaling molecules in the ascidian embryo: towards a comprehensive understanding of gene networks. Development 131, 4047–4058 (2004).Article CAS PubMed Google Scholar
30) Munoz-Sanjuan, I. & Brivanlou, A. H. Neural induction, the default model and embryonic stem cells. Nat. Rev. Neurosci. 3, 271–280 (2002)Article CAS PubMed Google Scholar
31) Streit, A., Berliner, A. J., Papanayotou, C., Sirulnik, A. & Stern, C. D. Initiation of neural induction by FGF signalling before gastrulation. Nature 406, 74–78 (2000).Article ADS CAS PubMed Google Scholar
32) Wilson, S. I., Graziano, E., Harland, R., Jessell, T. M. & Edlund, T. An early requirement for FGF signalling in the acquisition of neural cell fate in the chick embryo. Curr. Biol. 10, 421–429 (2000).Article CAS PubMed Google Scholar
33) Marchal, L., Luxardi, G., Thome, V. & Kodjabachian, L. BMP inhibition initiates neural induction via FGF signaling and Zic genes. Proc. Natl Acad. Sci. USA 106, 17437–17442 (2009).Article ADS CAS PubMed PubMed Central Google Scholar
34) Delaune, E., Lemaire, P. & Kodjabachian, L. Neural induction in Xenopus requires early FGF signalling in addition to BMP inhibition. Development 132, 299–310 (2005).Article CAS PubMed Google Scholar
35) Bronner, M. E. & LeDouarin, N. M. Development and evolution of the neural crest: an overview. Dev. Biol. 366, 2–9 (2012).Article CAS PubMed PubMed Central Google Scholar
36) Lu, T. M., Luo, Y. J. & Yu, J. K. BMP and Delta/Notch signaling control the development of amphioxus epidermal sensory neurons: insights into the evolution of the peripheral sensory system. Development 139, 2020–2030 (2012).Article CAS PubMed Google Scholar
37) Denes, A. S. et al. Molecular architecture of annelid nerve cord supports common origin of nervous system centralization in bilateria. Cell 129, 277–288 (2007).Article CAS PubMed Google Scholar
38) Rusten, T. E., Cantera, R., Kafatos, F. C. & Barrio, R. The role of TGF beta signaling in the formation of the dorsal nervous system is conserved between Drosophila and chordates. Development 129, 3575–3584 (2002).CAS PubMed Google Scholar
39) Patthey, C., Schlosser, G. & Shimeld, S. M. The evolutionary history of vertebrate cranial placodes--I: cell type evolution. Dev. Biol. 389, 82–97 (2014).Article CAS PubMed Google Scholar
40) Imai, K. S., Daido, Y., Kusakabe, T. G. & Satou, Y. Cis-acting transcriptional repression establishes a sharp boundary in chordate embryos. Science 337, 964–967 (2012).Article ADS CAS PubMed Google Scholar
41) Yagi, K. & Makabe, K. W. Isolation of an early neural maker gene abundantly expressed in the nervous system of the ascidian, Halocynthia roretzi. Dev. Genes Evol. 211, 49–53 (2001).Article CAS PubMed Google Scholar
42) Aniello, F. et al. Identification and developmental expression of Ci-msxb: a novel homologue of Drosophila msh gene in Ciona intestinalis. Mech. Dev. 88, 123–126 (1999).Article CAS PubMed Google Scholar
43) Takatori, N. et al. T-box genes in the ascidian Ciona intestinalis: Characterization of cDNAs and spatial expression. Dev. Dyn. 230, 743–753 (2004).Article CAS PubMed Google Scholar
44) Jose-Edwards, D. S., Oda-Ishii, I., Nibu, Y. & Di Gregorio, A. Tbx2/3 is an essential mediator within the Brachyury gene network during Ciona notochord development. Development 140, 2422–2433 (2013).Article CAS PubMed PubMed Central Google Scholar
45) Joyce Tang, W., Chen, J. S. & Zeller, R. W. Transcriptional regulation of the peripheral nervous system in Ciona intestinalis. Dev. Biol. 378, 183–193 (2013).Article CAS PubMed Google Scholar
46) Pasini, A., Manenti, R., Rothbacher, U. & Lemaire, P. Antagonizing retinoic acid and FGF/MAPK pathways control posterior body patterning in the invertebrate chordate Ciona intestinalis. PLoS ONE 7, e46193 (2012).Article ADS CAS PubMed PubMed Central Google Scholar
47) Paxton, C., Zhao, H. H., Chin, Y., Langner, K. & Reecy, J. Murine Tbx2 contains domains that activate and repress gene transcription. Gene 283, 117–124 (2002).Article CAS PubMed Google Scholar
48) Lu, R., Yang, A. & Jin, Y. Dual functions of T-box 3 (Tbx3) in the control of self-renewal and extraembryonic endoderm differentiation in mouse embryonic stem cells. J. Biol. Chem. 286, 8425–8436 (2011).Article CAS PubMed Google Scholar
49) Wicht, H. & Lacalli, T. C. The nervous system of amphioxus: structure, development, and evolutionary significance. Can. J. Zool. 83, 122–150 (2005).Article Google Scholar
50) Rossi, C. C., Kaji, T. & Artinger, K. B. Transcriptional control of Rohon-Beard sensory neuron development at the neural plate border. Dev. Dyn. 238, 931–943 (2009).Article CAS PubMed PubMed Central Google Scholar
51) Sauka-Spengler, T. & Bronner-Fraser, M. A gene regulatory network orchestrates neural crest formation. Nat. Rev. Mol. Cell Biol. 9, 557–568 (2008).Article CAS PubMed Google Scholar
52) Tribulo, C., Aybar, M. J., Nguyen, V. H., Mullins, M. C. & Mayor, R. Regulation of Msx genes by a Bmp gradient is essential for neural crest specification. Development 130, 6441–6452 (2003).Article CAS PubMed Google Scholar
53) Suzuki, A., Ueno, N. & Hemmati-Brivanlou, A. Xenopus msx1 mediates epidermal induction and neural inhibition by BMP4. Development 124, 3037–3044 (1997).CAS PubMed Google Scholar
54) Satou, Y., Kawashima, T., Shoguchi, E., Nakayama, A. & Satoh, N. An integrated database of the ascidian, Ciona intestinalis: Towards functional genomics. Zoolog. Sci. 22, 837–843 (2005).Article CAS PubMed Google Scholar
55) Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome. Biol. 11, R106 (2010).Article CAS PubMed PubMed Central Google Scholar
56) Satou, Y., Imai, K. & Satoh, N. Action of morpholinos in Ciona embryos. Genesis 30, 103–106 (2001).Article
57) Fransen, M.F.J. et al. (2021). Bioprinting of kidney in vitro models. Essays Biochem. https://portlandpress.com/essaysbiochem/article/65/3/587/918458
58) Ozbolat, I.T. et al. (2016). Bioprinting toward organ fabrication: challenges and future trends. IEEE Trans Biomed Eng. https://ieeexplore.ieee.org/document/7457231
59) Gudapati, H. et al. (2016). Inkjet bioprinting—A versatile tool for tissue engineering. Biotechnol Bioeng. https://doi.org/10.1002/bit.25997
60) Zhu, W. et al. (2017). 3D printing of organs-on-chips. Biomaterials. https://doi.org/10.1016/j.biomaterials.2017.01.005
61) Lam, E.H.Y. et al. (2023). 3D bioprinting for next-generation personalized medicine. Int J Mol Sci. https://www.mdpi.com/1422-0067/24/7/6357
62) Kim, Y.K. et al. (2019). Patient-specific iPSC-derived organoids for drug screening. Stem Cell Reports. https://www.cell.com/stem-cell-reports/pdf/S2213-6711(19)30450-0.pdf
63) Kim, B.S. et al. (2015). Biomaterials for 3D bioprinting. Biotechnol J. https://doi.org/10.1002/biot.201400671
64) Jang, J. et al. (2019). 3D printed complex tissue construct using decellularized ECM. Nat Commun. https://www.nature.com/articles/s41467-019-09652-x
65) Homan, K.A. et al. (2016). Bioprinted kidney proximal tubule models. Nat Biomed Eng. https://www.nature.com/articles/s41551-016-0005
66) Skylar-Scott, M.A. et al. (2019). Vascular network bioprinting. Science. https://www.science.org/doi/10.1126/science.aav9750
67) Garreta, E. et al. (2021). Tissue engineering and regenerative medicine for kidneys. Nat Rev Nephrol. https://www.nature.com/articles/s41581-021-00462-3
68) Murphy, S.V., Atala, A. (2014). 3D bioprinting of tissues and organs. Nat Biotechnol. https://www.nature.com/articles/nbt.2958
69) [1] Jager, K. J., Kovesdy, C., Langham, R., Rosenberg, M., Jha, V., & Zoccali, C. (2019). A single number for advocacy and communication-worldwide more than 850 million individuals have kidney diseases. Kidney International, 96(5), 1048–1050. https://doi.org/10.1016/j.kint.2019.07.012
70) [2] Wang, Y., et al. (2022). Kidney regeneration and organoids for disease modeling. Cell Stem Cell, 29(7), 965–979. https://doi.org/10.1016/j.stem.2022.06.001
71) [3] Morizane, R., & Bonventre, J. V. (2017). Generation of nephron progenitor cells and kidney organoids from human pluripotent stem cells. Nature Protocols, 12, 195–207. https://doi.org/10.1038/nprot.2016.154
72) [4] Homan, K. A., et al. (2019). Flow-enhanced vascularization and maturation of kidney organoids in vitro. Nature Methods, 16(3), 255–262. https://doi.org/10.1038/s41592-019-0325-y
73) Takasato, M., et al. (2015). Kidney organoids from human iPS cells. Nature, 526, 564–568. https://www.nature.com/articles/nature15695
74) [6] Freedman, B. S., et al. (2015). Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids. Nature Communications, 6, 8715. https://doi.org/10.1038/ncomms9715
75) [7] Lawlor, K. T., & Little, M. H. (2021). Kidney organoids: A translational journey. Trends in Molecular Medicine, 27(9), 813–822. https://doi.org/10.1016/j.molmed.2021.05.002
76) [8] Schumacher, A., et al. (2020). Bioprinting of 3D kidney tissue. Advanced Healthcare Materials, 9(18), 2000737. https://doi.org/10.1002/adhm.202000737
77) [9] Low, L. A., et al. (2021). Organs-on-chips: Into the next decade. Nature Reviews Drug Discovery, 20, 345–361. https://doi.org/10.1038/s41573-020-0079-3
78) [10] Czerniecki, S. M., et al. (2018). High-throughput screening enhances kidney organoid differentiation. Nature Methods, 15(11), 955–962. https://doi.org/10.1038/s41592-018-0189-y
79) [11] Forbes, T. A., et al. (2018). Patient-iPSC-derived kidney organoids show functional disease phenotypes. Nature Communications, 9, 5389. https://doi.org/10.1038/s41467-018-07874-9
80) [12] Musah, S., et al. (2017). Mature podocytes derived from human pluripotent stem cells. Nature Biomedical Engineering, 1(9), 1–12. https://doi.org/10.1038/s41551-017-0130-0
81) [13] Nishinakamura, R. (2019). Human kidney organoids: Progress and remaining challenges. Nature Reviews Nephrology, 15, 613–624. https://doi.org/10.1038/s41581-019-0165-x
82) [14] van den Berg, C. W., et al. (2018). Renal subcapsular transplantation of PSC-derived kidney organoids induces neo-vasculogenesis and significant glomerular and tubular maturation in vivo. Stem Cell Reports, 10(3), 751–765. https://doi.org/10.1016/j.stemcr.2018.01.041
83) [15] Lavazza, A., & Farina, M. (2020). Stem cell-derived embryo models and chimeras: Ethical issues. Stem Cell Reports, 14(6), 1046–1055. https://doi.org/10.1016/j.stemcr.2020.05.001
84) [16] Kim, Y. K., et al. (2021). Gene editing and kidney organoids for modeling and therapy. Nature Reviews Nephrology, 17(10), 655–667. https://doi.org/10.1038/s41581-021-00441-9
85) [17] Shuaib, M., et al. (2023). Blockchain in regenerative healthcare: Traceability of bioengineered organs. Journal of Biomedical Informatics, 136, 104352. https://doi.org/10.1016/j.jbi.2022.104352
Cite this Article: