Intellectual Radio for Shrewd Network with Security Contemplations of 5G Innovation


Md Sabbir Hosen , Sidratul Montaha Silmee , Atif Ali Khan ,

Download Full PDF Pages: 48-59 | Views: 468 | Downloads: 155 | DOI: 10.5281/zenodo.5592754

Volume 10 - September 2021 (09)


5G remote frameworks will expand portable correspondence administrations past versatile communication, portable broadband, and huge machine-type correspondence into new application spaces, to be specific the purported vertical areas including the shrewd production line, keen vehicles, savvy matrix, brilliant city, and so on At last, our vision of 6G remote frameworks is talked about momentarily. The fuse of fifth-age organizations (5G) in a brilliant matrix would make novel plans of action of "edge" and "mist" innovation at the utility side, going with savvy control and robotization. Finally, the remarkable Job Based Admittance Control (RBAC) is fused with the Intellectual Radio piece of a sharp system correspondence association to guarantee against unapproved permission to customer's data and to the association running free. We additionally give a study of the connected exploration committed to mechanization in the upward spaces


cognitive radio; information security; smart grid; role-based access control


i.        Marah, R., & El Hibaoui, A. (2018). Algorithms for Smart Grid management. Sustainable Cities and Society, 38; 627–635.

ii.      Colak, I. (2016). Introduction to Smart Grid. In 3rd International Smart Grid Workshop and Certificate Program (ISGWP). 30–34;

iii.    Report of the Unlicensed Devices and Experimental Licenses Working Group Federal Communications Commission Spectrum Policy Task Force November 15, 2002. sptf/files/E&UWGFinalReport.pdf (accessed on 12 December 2015).

iv.     General Survey of Radio Frequency Bands—30 MHz to 3 GHz. 2010. http://www. pdf (accessed on 15 November 2015).

v.       Metke, A.R.; Ekl, R.L. Security technology for smart grid networks. IEEE Trans. Smart Grid 2010, 1, 99–107.

vi.     Erdem, H. E., & Gungor, V. C. (2018). On the lifetime analysis of energy harvesting sensor nodes in smart grid environments. Ad Hoc Networks, 75–76, 98–105.

vii.    Yu, K., Davaasambuu, B., Nguyenand, N. H., Nguyen, Q., Mohammad, A., & Sato, T. (2016). Cost-efficient residential energy management scheme for information-centric networking based home network in smart grid, International Journal of Computer Networks & Communications (IJCNC), 8(2), 25–42.

viii. Sandhu, R.S.; Coyne, E.J.; Feinstein, H.L.; Youman, C.E. Role-based access control models. Computer 1996, 29,

ix.     38–47. [CrossRef]

x.       Yu, R.; Zhong, W.; Xie, S.; Zhang, Y.; Zhang, Y. QoS differential scheduling in cognitive-radio-based smart grid networks: An adaptive dynamic programming approach. IEEE Trans. Neural Netw. Learn. Syst. 2016, 27, 435–443. [CrossRef] [PubMed]

xi.     Al Hussien, N.; Abdel-Hafez, M.; Shuaib, K. Collaborative sensing for cognitive radio under log-normal shadowing. In Proceedings of the 2015 IEEE 8th GCC Conference and Exhibition (GCCCE), Muscat, Oman, 1–4 February 2015; pp. 1–6.

xii.   Kalyani, V. L., & Sharma, D. (2015). IoT: Machine to Machine (M2M), Device to Device (D2D) Internet of Everything (IoE) and Human to Human (H2H): Future of Communication. Journal of Management Engineering and Information Technology, (26), 2394–8124.

xiii. Li, L.; Zhou, X.; Xu, H.; Li, G.Y.; Wang, D.; Soong, A. Energy-efficient transmission in cognitive radio networks. In Proceedings of the 7th IEEE Consumer Communications and Networking Conference (CCNC), Las Vegas, NV, USA, 9–12 January 2010; pp. 1–5.

xiv. Baykas, T.; Kasslin, M.; Cummings, M.; Kang, H.; Kwak, J.; Paine, R.; Reznik, A.; Saeed, R.; Shellhammer, S.J. Developing a standard for TV white space coexistence: Technical challenges and solution approaches. IEEE Wirel. Commun. 2012, 19, 10–22. [CrossRef]

xv.   Filin, S.; Baykas, T.; Harada, H.; Kojima, F.; Yano, H. IEEE standard 802.19.1 for TV white space coexistence.

xvi. IEEE Commun. Mag. Commun. Stand. Suppl. 2016, 54, 22–26. [CrossRef]

xvii.                    Flores, A.B.; Guerra, R.E.; Knightly, E.W.; Ecclesine, P.; Pandey, S. IEEE 802.11af: A standard for TV white space spectrum sharing. IEEE Commun. Mag. 2013, 51, 92–100. [CrossRef]

xviii.                  Khan, A.A.; Rehmani, M.H.; Reisslein, M. Cognitive radio for smart grids: Survey of architectures, spectrum sensing mechanisms, and networking protocols. IEEE Commun. Surv. Tutor. 2016, 18, 860–898. [CrossRef]

xix. Z. Chen, N. Guo, and R. C. Qiu, “Building A cognitive radio network testbed,” in Proceedings of the IEEE Southeastcon, Nashville, Tenn, USA, March 2011.

xx.   R. Qiu, Z. Hu, G. Zheng, Z. Chen, and N. Guo, “Cognitive radio network for the Smart Grid: experimental system architecture, control algorithms, security, and microgrid testbed,” IEEE Transactions on Smart Grid. In press.

xxi. N. Ghasemi and S. M. Hosseini, “Comparison of smart grid with cognitive radio: solutions to spectrum scarcity,” in Proceedings of the 12th International Conference on Advanced Communication Technology (ICACT ’10), vol. 1, pp. 898–903, February 2010.

xxii.                    Z. Tian and G. B. Giannakis, “Compressed sensing for wideband cognitive radios,” in Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP ’07), vol. 4, pp. 1357–1360, 2007.

xxiii.                  A. Lakhzouri, E. Lohan,R.Hamila, and M. Renfors, “Extended Kalman filter channel estimation for line-of-sight detection in WCDMA mobile positioning,” EURASIP Journal on Applied Signal Processing, vol. 2003, pp. 1268–1278, 2003.

xxiv.                   ABI-Research, “5G is standardized. now what?” Jun. 2018. [Online]. Available:

xxv.                     3GPP, “Study on communication for automation in vertical domains (release 16),” in TR 22.804 V16.2.0, Dec. 2018. [Online]. SpecificationDetails.aspx?specificationId=3187

xxvi.                   5G-PPP, “5GCity project: Use cases for smart cities to improve the 5G ecosystem using a strong partnership between industrial and research area,” in IEEE 5G SUMMIT Trento. IEEE, Mar. 2018. [Online].

xxvii.                 X. Fang, S. Misra, G. Xue, and D. Yang, “Smart gridthe new and improved power grid: A survey,” IEEE Commun. Surveys & Tuts, vol. 14, no. 4, pp. 944–980, Dec. 2012.

xxviii.               A. Gharaibeh, M. A. Salahuddin, S. J. Hussini, A. Khreishah, I. Khalil, M. Guizani, and A. Al-Fuqaha, “Smart cities: A survey on data management, security, and enabling technologies,” IEEE Commun. Surveys Tuts., vol. 19, no. 4, pp. 2456–2501, Fourthquarter 2017.

xxix.                   S. Djahel, R. Doolan, G. Muntean, and J. Murphy, “A communicationsoriented perspective on traffic management systems for smart cities: Challenges and innovative approaches,” IEEE Commun. Surveys Tuts., vol. 17, no. 1, pp. 125–151, Firstquarter 2015.

xxx.                      D. Eckhoff and I. Wagner, “Privacy in the smart cityapplications, technologies, challenges, and solutions,” IEEE Commun. Surveys Tuts., 20, no. 1, pp. 489–516, Firstquarter 2018.

xxxi.                    M. Sookhak, H. Tang, Y. He, and F. R. Yu, “Security and privacy of smart cities: A survey, research issues and challenges,” IEEE Commun. Surveys Tuts., pp. 1–1, 2018.

xxxii.                  M. Agiwal, A. Roy, N. Saxena. (2016) “Next generation 5G wireless-networks: a comprehensive-survey.” IEEE Communications surveys and Tutorials 18 (3):1617-1655

xxxiii.                5G network architecture-A high-level perspective, Huawei, 2016. Level_Perspective_en.pdf.

xxxiv.               M.R. Palattella, M. Dohler, A. Grieco, G. Rizzo, J. Torsner, T. Engel, et al. (2016) “Internet-of-things in the 5G era: enablers, architecture, and business models.” IEEE Journal on Selected-Areas in-Communications 34 (3):510-527.

xxxv.                 Charles Rajesh Kumar J, Kanagaraj M (2017) ” Enhanced TACIT Algorithm Based on Charl’s table for Secure Routing in NoC Architecture” Journal of Computational and Theoretical Nanoscience 14(12):5680-5685.

Cite this Article: