Recent Progress in Lithium Ion Battery Technology 


Yusuf A. S , Ramalan A. M , Umar M , Buba A. D. A ,

Download Full PDF Pages: 01-18 | Views: 432 | Downloads: 136 | DOI: 10.5281/zenodo.5341957

Volume 10 - August 2021 (08)


This paper is aimed at giving a detailed review on the recent advancements in lithium ion battery technology focusing on the underlying principle; design and configuration; materials; fabrication techniques; application; and challenges of lithium ion batteries (LIBs). The first rechargeable Li-ion batteries with cathode of layered TiS2 and anode of metallic Li was reported by Whittingham while working at Exxon in 1976 but this invention was not successful due to the problems of Li dendrite formation and short circuit upon extensive cycling and safety concern. However, there was a turnaround when Goodenough offered a theoretical framework for possible materials for effective intercalation/deintercalation and Yohsino carried out the first safety test on Li-ion batteries to demonstrate their enhanced safety features. LIBs consist of two electrodes, anode and cathode, immersed in an electrolyte and separated by a polymer membrane; and works by converting chemical energy into electrical energy and vice versa through charging and discharging processes. Most of the LIB models are derived from the porous electrode and concentrated solution theories which mathematically describe charge/discharge and species transport in the solid and electrolyte phases across a simplified 1D spatial cell structure. The cathode materials can be categorized based on voltage, typically 2-Volt, 3-Volt, 4-Volt and 5-Volt and currently LiCoO2 and LiFePO4 are most widely used in commercial Li-ion batteries because of their good cycle life (>500 cycles).  Carbon is a dominant anode material although there are other materials available such as Nexelion; the choice of anode materials significantly influences the electrochemical performances, including cyclability, charging rate, and energy density of Li-ion batteries. A typical liquid electrolyte is a solution of lithium salts in organic solvents which must be carefully chosen to withstand the redox environment at both cathode and anode sides and the voltage range involved without decomposition or degradation. Separators are essential components of Li-ion batteries and play a critical role to avoid direct physical contact between the cathode and anode, and prevents short circuit to occur. A number of benefits are offered by this technology such as lightweight, high energy density power sources for a variety of devices. However, cost is one of the major challenges in the development of LIBs, another issue that is yet to be resolved is that the battery capacity tends to fade upon electrochemical cycling. Hence, if the opportunities embedded in the LIB technology is properly harnessed, there will create an economically viable environment.


Not Provided by Author


   i            Alarco, J., & Talbot, P. (2015, April 30). Charged up: the history and development of batteries. Retrieved from The Conversation:

      ii            Andrea, D. (2010). Battery Management Systems for Large Lithium-Ion Battery Packs. Artech House.

      iii            Baughman, R. H., Zakhidov, A. A., & deHeer, W. A. (2002). Carbon nanotubes-the route toward applications. Science, 297, 787–792.

   iv            Bazant, M. Z. (2013). Theory of chemical kinetics and charge transfer based on non-equilibrium thermodynamics. Accounts of Chemical Research, 46, 1144-1160.

    v            Bruce, P. G., Scrosati, B., & Tarascon, J.-M. (2008). Nanomaterials for Rechargeable Lithium Batteries. Angewandte Chemie International Edition, 47(16), 2930–2946. doi:10.1002/anie.200702505

       vi            Chaturvedi, N. A., Klein, R., Christensen, J., Ahmed, J., & Kojic, A. (2012). Estimation of Lithium Transport Rate inLithium-ion Batteries -A Particle Filtering Approach. Workshop on Engine and Powertrain Control,Simulation and Modeling (pp. 116 - 121). Rueil-Malmaison, France: The International Federation of Automatic Control.

     vii            Che, G. L., Lakshmi, B. B., Fisher, E. R., & Martin, C. R. (1998). Carbon nanotubule membranes forelectrochemical energy storage and production. Nature, 393, 346–349.

   viii            Chen, H., Armand, M., Demailly, G., Dolhem, F., Poizot, P., & Tarascon, J.-M. (2008). From Biomass to aRenewable LiXC6O6 Organic Electrode for SustainableLi-Ion Batteries. Chemsuschem, 1, 348–355.

       ix            Chung, S. Y., & Chiang, Y. M. (2002). Electronically conductive phospho-olivines as lithium storage electrodes. Nature Materials, 1, 123–128.

         x            Croce, F., Appetecchi, G. B., Persi, L., & Scrosati, B. (1998). Nanocomposite polymer electrolytes for lithium batteries. Nature, 394, 456–458.

       xi            Dao, T. -S., Vyasarayani, C. P., & McPhee, J. (2012). Simplification and order reduction of lithium-ion battery model based onporous-electrode theory. Journal of Power Sources, 198, 329– 337.

     xii            Deng, D. (2015). Li-ion batteries: basics, progress, and challenges. Energy Science and Engineering, 3(5), 385–418. doi:10.1002/ese3.95

   xiii            Deng, D., & Lee, J. Y. (2013). Meso-oblate Spheroidsof Thermal-Stabile Linker-Free Aggregates withSize-Tunable Subunits for Reversible Lithium Storage. ACS Applied Materials and Interfaces, 6, 1173–1179.

   xiv            Deng, D., Kim, M. G., Lee, J. Y., & Cho, J. (2009). Green energy storage materials: Nanostructured TiO2 and Sn-based anodes for lithium-ion batteries. Energy and Environmental Science, 2, 818–837.

     xv            Deshpande, R. D. (2011). Understanding and Improvinglithium Ion Batteries through mathematical Modeling Andexperiments. Kentucky: University of Kentucky, USA.

   xvi            DeVidts, P., & White, R. E. (1997). Governing equations for transport inporous electrodes. Journal of the Electrochemical Society, 144(4), 1343-1353.

 xvii            Dimov, N., Xia, Y., & Yoshio, M. (2007). Practicalsilicon-based composite anodes for lithium-ionbatteries: Fundamental and technological features. Journal of Power Sources, 171, 886–893.

xviii            Doyle, M., Fuller, T., & Newman, J. (1993). Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell. Journal of The Electrochemical Society, 140(6), 1526–1533.

   xix            Dubal, D. P., Ayyad, O., V. Ruiz, V., & Gómez-Romero, P. (2015). Hybrid energy storage: the merging of battery and supercapacitor chemistries. Chemical Society Reviews, 44(7), 1777-1790. doi: 10.1039/C4CS00266K

     xx            Dunning, J. (2016). The Inside Story of the Lithium Ion Battery.

   xxi            Ferguson, T. R. (2014). Lithium-ion Battery Modeling Using Non-equilibrium Thermodynamics. Massachusetts, USA: Massachusetts Institute of Technology.

 xxii            Goodenough, J. B. (2013). Evolution of Strategies for Modern Rechargeable Batteries. Accounts of Chemical Research, 46(5), 1053 - 1061. doi:10.1021/ar2002705

xxiii            Goodenough, J. B., & Park, K. -S. (2013). The Li-Ion Rechargeable Battery: A Perspective. Journal of the American Chemical Society, 135(4), 1167–1176.

xxiv            Goriparti, S., Miele, E., De Angelis, F., Fabrizio, E. D., Zaccaria, R. P., & Capiglia, C. (2014). Review on recent progress of nanostructured anode materials for Li-ion batteries. Journal of Power Sources, 257, 421-443.

  xxv            Huggins, R. A. (2009). Advanced Batteries: Materials Science Aspects. New York, NY 10013, USA: Springer.

xxvi            Huie, M. M., Bock, D., Takeuchi, E. S., Marschilok, A. C., & Takeuchi, K. J. (2015). Cathode materials for magnesium and magnesium-ion based batteries. Coordination Chemistry Reviews, 287, 15-27.

xxvii            Idota, Y. K., Matsufuji, A., Maekawa, Y., & Miyasaka, T. (1997). Tin-based amorphous oxide: Ahigh-capacity lithium-ion-storage material. Science, 276, 1395–1397.

xxviii            Islam, M. S., & Fisher, C. A. (2013). Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties. Chemical Society Reviews, 43(1), 185-204.

xxix            Kumar, T. P., Ramesh, R., Lin, Y. Y., & Fey, G. T. (2004). Tin-filled carbon nanotubes as insertionanode materials for lithium-ion batteries. Electrochemical Communication, 6, 520–525.

  xxx            LaVine, S. (2017, March 20). Has lithium-battery genius John Goodenough done it again? Colleagues are skeptical. Retrieved from Quartz:

xxxi            Lee, Y. J., Yi, H., Kim, W. -J., Kang, K., Yun, D. S., & Strano, M. S. (2009). Fabricating Genetically Engineered High-Power Lithium-Ion Batteries Using Multiple Virus Genes. Science, 324, 1051–1055.

xxxii            Levine, S. (2010). The Great Battery Race. Foreign Policy, 182, 88–95.

xxxiii            Li, Z., Huang, J., Liaw, B. Y., Metzler, V., & Zhang, J. B. (2014). A review of lithium deposition in lithium-ion and lithium metal secondary batteries. Journal of Power Sources, 254, 168-182.

xxxiv            Liu, C., Neale, Z. G., & Cao, G. (2016). Understanding electrochemicalpotentials of cathode materialsin rechargeable batteries. Materials Today, 19(2), 109 - 123.

xxxv            Marcicki, J., Conlisk, A. T., & Rizzoni, G. (2014). A lithium-ion battery model including electrical double layer effects. Journal of Power Sources, 251, 157-169.

xxxvi            Megahed, S., & Scrosati, B. (1994). Lithium-ion rechargeable batteries. Journal of Power Sources, 51, 79–104.

xxxvii            Miller, P. (2015). Automotive Lithium-Ion Batteries. Johnson Matthey Technology Review, 59(1), 4–13. doi:10.1595/205651315x685445

xxxviii            Mizushima, K. J., Wiseman, P. J., & Goodenough, J. B. (1981). LixCoO2 (0<x≤1): A new cathode material for batteries of high energy density. Solid State Ionics, 3 - 4, 171–174.

xxxix            Newman, J., & Tiedemann, W. (1975). Porous-Electrode Theory with Battery Applications. AlChE Journal, 21(1), 25–41.

       xl            News. (2016, September 2). Samsung recall for Galaxy Note 7. Retrieved from The news in colour:

     xli            Obrovac, M. N., & Chevrier, V. L. (2014). Alloy Negative Electrodes for Li-Ion Batteries. Chemical Reviews, 114(23), 11444 –11502. doi:10.1021/cr500207g

   xlii            Obrovac, M. N., Christensen, L., Le, D. B., & Dahn, J. R. (2007). Alloy Design for Lithium-Ion Battery Anodes. Journal of The Electrochemical Society, 154, A849.

 xliii            Oswal, M., Paul, J., & Zhoa, J. (2010). A comparative study of Lithium Ion Batteries. AME 578 Project.

 xliv            Park, J.-K. (2012). Principles and Applications of Lithium Secondary Batteries. Germany: Wiley-VCH.

   xlv            Pistoia, G., & Nazri, G. -A. (2003). Lithium Batteries: Science and Technology. Kluwer : Academic Publishers.

 xlvi            Purushothaman, B. K., & Landau, U. (2006). Rapid Charging of Lithium Ion Batteries Using Pulsed Currents – A Theoretical Analysis. Journal of The Electrochemical Society, 153, A533-A542.

xlvii            Richard. (2017, March 1). Goodenough’s All-Solid-State-Battery Cells. Retrieved from UPS Battery Center:

xlviii            Roy, P., & Srivastava, S. K. (2015). Nanostructured anode materials for lithium ion batteries. Journal of Material Chemistry A, 3, 2454-2484. doi: 10.1039/C4TA04980B

 xlix            Su, L., Jing, Y., & Zhou, Z. (2011). Li ion battery materials with core–shell nanostructures. Nanoscale, 3, 3967-3983. doi:10.1039/C1NR10550G

          l            Tang, M., Carter, W. C., & Chiang, Y. -M. (2010). Electrochemically Driven Phase Transitions in Insertion Electrodes for Lithium-Ion Batteries: Examples in Lithium Metal Phosphate Olivines. Annual Review of Materials Research, 40, 501-529. doi:10.1146/annurev-matsci-070909-104435

        li            Tarascon, J. M., & Armand, M. (2001). Issues andchallenges facing rechargeable lithium batteries. Nature, 414, 359–367.

      lii            Thomas, E. V., Bloom, I., Christophersen, J. P., & Battaglia, V. S. (2008). Statistical methodology for predicting the life of lithium-ion cells via accelerated degradation testing. Journal of Power Sources, 184, 312 - 317.

    liii            UTNews. (2017, February 28). Lithium-Ion Battery Inventor Introduces New Technology for Fast-Charging, Noncombustible Batteries. Retrieved from UTNews:

     liv            Wang, X., Wen, Z., Liu, Y., & Wu, X. (2009). A novelcomposite containing nanosized silicon and tin asanode material for lithium ion batteries. Electrochimica Acta, 54, 4662–4667.

       lv            Wang, Y., Zeng, H. C., & Lee, J. Y. (2006). Highlyreversible lithium storage in porous SnO2 nanotubes with coaxially grown carbon nanotube overlayers. Advanced Materials, 18, 645–649.

     lvi            Whittingham, M. S. (1976). Electrical Energy Storageand Intercalation Chemistry. Science, 192, 1126–1127.

   lvii            Wikipedia. (2017, July 31). Lithium-ion battery. Retrieved from Wikipedia:

 lviii            Wikipedia. (2017b, August 7). Lithium-ion battery. Retrieved from Wikipedia:

     lix            Winter, M., & Besenhard, J. O. (1999). Electrochemical lithiation of tin and tin-based intermetallics andcomposites. Electrochim Acta, 45, 31–50.

       lx            Xu, K. (2004). Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chemical Reviews, 104, 4303-4417.

     lxi            Yoshino, A. (2012). The Birth of the Lithium-Ion Battery. Angewandte Chemie International Edition, 51, 5798–5800.

   lxii            Zhi, M., Xiang, C., Li, J., Ming Li, M., & Wu, N. (2013). Nanostructured carbon–metal oxide composite electrodes for supercapacitors: a review. Nanoscale, 5(1), 72-88. doi:10.1039/C2NR32040A


 lxiii            Zhu, J., Ng, K. Y., & Deng, D. (2014). Porousolive-like carbon decorated Fe3O4 based additive-freeelectrodes for highly reversible lithium storage. Journal of Material Chemistry A, 2, 16008–16014.

Cite this Article: